Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[tetrakis(μ-propionato$\kappa^{2} O: O^{\prime}$)dicopper(II)]- μ-3-pyridyl-methanol- $\kappa^{2} N: O$-[bis(propionato- κO)-bis(3-pyridylmethanol- κN)copper(II)]-μ-3-pyridylmethanol- $\kappa O: N$]

Jan Moncol,* Jaroslava Maroszova, Milan Melník and Marian Koman

Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37, Bratislava, Slovakia
Correspondence e-mail: jan.moncol@stuba.sk
Received 16 December 2006
Accepted 26 January 2007
Online 17 February 2007

The title compound, $\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{4}\right]_{n}$, is composed of polymeric chains formed by alternating centrosymmetric $\mathrm{Cu}_{2}\left(\mu-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{4}$ and $\mathrm{Cu}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7}-\right.$ $\mathrm{NO})_{2}$ units. These elemental units are linked by two bridging 3-pyridylmethanol (3PM) ligands. The $\mathrm{Cu}_{2}\left(\mu-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{4}$ group presents a centrosymmetric tetrabridged structure with four syn-syn bridging propionate ligands to which two 3PM molecules are bonded (through N), occupying the apical positions of each square-pyramidal polyhedron around the $\mathrm{Cu}^{\mathrm{II}}$ ions. The remaining mononuclear group is centred around a third $\mathrm{Cu}^{\mathrm{II}}$ ion, which lies on a symmetry centre and is bound to two monodentate propionate groups (through O), two monodentate 3PM molecules (through N) and two bridging 3PM molecules (through O), thus completing a square-bipyramidal $\mathrm{CuO}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ coordination.

Comment

3-Pyridylmethanol (3PM) is a non-steroidal anti-inflammatory agent in current use. It can act as an effective ligand in coordination compounds, where it presents a variety of binding modes. In the monomeric structures $\left[\mathrm{CuCl}_{2}(3 \mathrm{PM})_{4}\right]$, (II) (Moncol et al., 2004), and $\left[\mathrm{Cu}(2 \text {-nitrobenzoato })_{2}(3 \mathrm{PM})_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (III) (Stachová et al., 2006), 3PM behaves as a terminal ligand, coordinating through the N atom of its pyridine ring. An analogous binding mode is found in dimeric $\left[\mathrm{Cu}_{2}\left(\mu-\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}(3 \mathrm{PM})_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (IV) (Melník et al., 1985), where the $\mathrm{Cu}^{\mathrm{II}}$ atoms are bridged into pairs by four acetate groups to form two crystallographically independent binuclear molecules, with the N atoms of the 3PM ligands situated at the vertices of a slightly deformed square pyramid around the cations. More complex intermolecular interactions are achieved in complexes of general formula $\left[\mathrm{Cu}\left(R \mathrm{CO}_{2}\right)_{2}(\mu\right.$ -
$\left.3 \mathrm{PM})_{2}\right]_{n}$. For $R \mathrm{CO}_{2}=$ salicylate, (V) (Hoang et al., 1992; Maroszová, Moncol et al., 2006), 4-chlorosalicylate, (VI) (Maroszová, Martiška et al., 2006), flufenamate, (VII) (Lörinc et al., 2004), clofibriate, (VIII) (Moncol et al., 2001), or 2-chlorobenzoate, (IX) (Moncol et al., 2006), a two-dimensional sheet is built up with $\mathrm{Cu}^{\mathrm{II}}$ ions linked by bridging 3PM ligands. When $R \mathrm{CO}_{2}=$ trichloroacetate, (X) (Múdra et al., 2003), dichloroacetate, (XI) (Múdra et al., 2003), 3-nitrobenzoate, (XII) (Stachová et al., 2005), 3,5-dinitrobenzoate, (XIII) (Stachová et al., 2006), niflumate, (XIV) (Valach et al., 1997), or 2-methylthionicotinate, (XV) (Moncol et al., 2006), the result is a one-dimensional coordination polymer. Finally, the crystal structure of $\left[\mathrm{Cu}_{3}(2 \text {-chloronicotinate })_{6}(\mu-3 \mathrm{PM})_{4}{ }^{-}\right.$ $\left.(3 \mathrm{PM})_{2}\right]_{n}$, (XVI) (Moncol et al., 2006), consists of onedimensional 'accordion chain' coordination polymers with different coordination environments around the $\mathrm{Cu}^{\text {II }}$ ions (square bipyramidal and square pyramidal).

(I)

The crystal structure of (I) consists of zigzag chains (Fig. 1) that are formed by alternating dinuclear $\mathrm{Cu}_{2}\left(\mu-\mathrm{CH}_{3} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CO}_{2}\right)_{4}$ and mononuclear $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}(3 \mathrm{PM})_{2}$ units linked by bridging 3PM molecules. The dimeric unit is formed around a symmetry centre and presents a tetrabridged paddlewheel structure with four syn-syn bridging propionate ligands. The $\mathrm{Cu} 2 \cdots \mathrm{Cu} 2^{\mathrm{i}}$ [symmetry code: (i) $-x, 1-y, 1-z$] distance is 2.6367 (12) \AA, very similar to the values found in other dimeric copper(II) propionate complexes (range 2.5692.655 Å; Melník et al., 1998). The τ value (Addison et al., 1984) is 0.005 for atom Cu 2 , which is typical for a square-pyramidal geometry. The basal plane consists of four O atoms [O4, O5 ${ }^{\text {i }}$, O6 and O^{i}; symmetry code: (i) $-x,-y+1,-z+1$], at distances in the range 1.958 (3) -1.964 (3) \AA. The apical site is occupied by the N atom of the 3 PM pyridine ring $[\mathrm{Cu} 2-\mathrm{N} 2=$ 2.176 (3) \AA]. Atom Cu 2 is displaced from the least-squares plane defined by the basal atoms by 0.207 (1) \AA towards the apical N atom. The $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}(3 \mathrm{PM})_{2}$ unit also has a centrosymmetric structure, with a $\mathrm{CuO}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ square-bipyramidal coordination around atom Cu 1 , which lies at the symmetry centre. The environment is defined by two O atoms from two monodentate propionate groups, two N atoms from two monodentate 3PM molecules and two O atoms from two bridging 3PM molecules. The basal plane is built up by a pair of carboxylate O atoms $[\mathrm{Cu} 1-\mathrm{O} 1=1.954$ (2) \AA] and a pair of N atoms $[\mathrm{Cu} 1-\mathrm{N} 1=2.003(2) \AA$ from the pyridine rings in the terminal neutral 3-pyridylmethanol molecules. The axial
positions are occupied by two hydroxyl O atoms $[\mathrm{Cu} 1-\mathrm{O} 8=$ 2.502 (3) Å] from the bridging 3PM ligands.

Intramolecular hydrogen bonds [O8 $\cdots \mathrm{O} 2=2.625(5) \AA$ A create a six-membered metallocycle and stabilize the molecular structure of the chain building units. The crystal structure of (I) consists of zigzag one-dimensional chains (Fig. 2), which are connected by intermolecular hydrogen bonds [O3 $\cdots \mathrm{O} 2^{\mathrm{iii}}=2.768$ (5) \AA; symmetry code: (iii) $x+1, y$, $z]$ to form two-dimensional sheets.

The structure of (I) can be compared with the dimeric structure of (IV) mentioned above and the polymeric structures (V)-(XV). The $\mathrm{Cu} 2 \cdots \mathrm{Cu} 2^{i}$ distance and the average $\mathrm{Cu} 2-\mathrm{O}_{\mathrm{COO}}$ and $\mathrm{Cu} 2-\mathrm{N} 2$ bond distances of the $\mathrm{Cu}_{2}(\mu-$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{4}$ unit are very similar to the bond distances in (IV), where the molecular structure consists of two crystallographically independent molecules of $\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}$ $(3 \mathrm{PM})_{2}$. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance, and average $\mathrm{Cu}-\mathrm{O}_{\mathrm{COO}}$ (acetate anions) and $\mathrm{Cu}-\mathrm{N}_{\mathrm{ax}}$ (N atom of the pyridine ring of 3PM) bond lengths in the two independent dimers of (IV) are 2.654 (1), 1.963 (4) and 2.197 (5) \AA, and 2.634 (1), 1.969 (4) and $2.152(5) \AA$, respectively. The geometry of the $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}(3 \mathrm{PM})_{2}$ unit and the bond distances are

Figure 1
A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $-x,-y,-z$.]

Figure 2
The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding in the crystal structure of (I). [Symmetry code: (iii) $x+1, y, z$.]
very similar to the molecular structure of complexes with the formula $\left[\mathrm{Cu}\left(R \mathrm{CO}_{2}\right)_{2}(\mu-3 \mathrm{PM})_{2}\right]_{n}$, viz. (V)-(XV). The present crystal structure can be considered as the connecting link between two types of structures of copper(II) carboxylate adducts with 3PM (dimeric and polymeric).

Experimental

$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was prepared as described by Battaglia \& Corradi (1986). Compound (I) was prepared by treating 3-pyridylmethanol with $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in a 2:3 molar ratio in hot methanol. The resulting solution was filtered and the filtrate left to stand at room temperature, allowing fine green crystals to precipitate out. These crystals were filtered off, washed with cold methanol and dried at room temperature. Crystals of (I) suitable for structural determination were obtained by recrystallizing the crude product from methanol with a small amount of acetone (yield 70\%). Analysis found: C 47.56, H 5.68, N 5.30, $\mathrm{Cu} 17.82 \% ; \mathrm{C}_{42} \mathrm{H}_{58} \mathrm{Cu}_{3} \mathrm{~N}_{4} \mathrm{O}_{16}$ requires: C 47.34, H 5.49, N 5.26, Cu 17.89\%.

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{4}\right]$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.507 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m}=1.50 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$M_{r}=1065.54$
Triclinic, $P \overline{1}$
$a=8.194$ (2) \AA
$b=9.959(2) \AA$
$c=15.358$ (3) A
$\alpha=104.27(3)^{\circ}$
$\beta=103.99(3)^{\circ}$
$\gamma=91.10(3)^{\circ}$
$V=1174.4$ (4) \AA^{3}
D_{m} measured by flotation in a mixture of CHCl_{3} and CHBr_{3}
Mo $K \alpha$ radiation
$\mu=1.42 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular prism, green
$0.45 \times 0.40 \times 0.30 \mathrm{~mm}$

Data collection

Syntex $P 2_{1}$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.576, T_{\text {max }}=0.654$
5808 measured reflections
5428 independent reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.153$
$S=1.01$
5428 reflections
300 parameters
3645 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=27.6^{\circ}$
2 standard reflections every 100 reflections intensity decay: 15%

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.103 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.76 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}$

Table 1
Selected interatomic distances (\AA).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.954(2)$	$\mathrm{Cu} 2-\mathrm{O} 6$	$1.964(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.003(3)$	$\mathrm{Cu} 2-\mathrm{O} 7^{\mathrm{i}}$	$1.963(3)$
$\mathrm{Cu} 1-\mathrm{O} 8$	$2.502(3)$	$\mathrm{Cu} 2-\mathrm{N} 2$	$2.176(3)$
$\mathrm{Cu} 2-\mathrm{O} 4$	$1.960(3)$	$\mathrm{Cu} 2 \cdots \mathrm{Cu}^{\mathrm{i}}$	$2.6367(12)$
$\mathrm{Cu} 2-\mathrm{O}^{\mathrm{i}}$	$1.958(3)$		

Symmetry code: (i) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.82	1.95	$2.768(5)$	174
O8-H8O $\cdots \mathrm{O} 2$	0.82	1.84	$2.625(5)$	160

Symmetry code: (ii) $x+1, y, z$.

metal-organic compounds

All H atoms attached to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93,0.97$ and $0.96 \AA$ for aromatic, methylene and methyl groups, respectively. The hydroxyl H atom was positioned using the AFIX 147 facility in SHELXL97 (Sheldrick, 1997) (O-H = $0.82 \AA$). In all cases, $U_{\text {iso }}(\mathrm{H})=x U_{\text {iso }}(\mathrm{C}, \mathrm{O})$, where $x=1.2$ for aromatic and methylene, and $x=1.5$ for methyl and hydroxyl H atoms.

Data collection: $P 2_{1}$ Software (Syntex, 1973); cell refinement: $P 2_{1}$ Software; data reduction: XP21 (Pavelčík, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

The authors thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences for financial support through grant No. 1/2452/05, and the Research and Development Support Agency for financial support through grant No. APVT-20005504.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BG3026). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Battaglia, L. P. \& Corradi, A. B. (1986). J. Chem. Soc. Dalton Trans. pp. 16531657.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hoang, N. N., Valach, F., Macášková, L. \& Melník, M. (1992). Acta Cryst. C48, 1933-1936.
Lörinc, S., Koman, M., Melník, M., Moncol, J. \& Ondrušova, D. (2004). Acta Cryst. E60, m590-m592.
Maroszová, J., Martiška, L., Valigura, D., Koman, M. \& Głowiak, T. (2006). Acta Cryst. E62, m1164-m1166
Maroszová, J., Moncol, J., Koman, M., Melník, M. \& Głowiak, T. (2006). Acta Cryst. E62, m3385-m3387.
Melník, M., Kabešová, M., Koman, M., Macášková, Ľ., Garaj, J., Holloway, C. \& Valent, A. (1998). J. Coord. Chem. 45, 147-359.
Melník, M., Smolander, K. \& Sharrock, P. (1985). Inorg. Chim. Acta, 103, 187194.

Moncol, J., Koman, M., Melník, M. \& Głowiak, T. (2001). CrystEngComm, 3, 262-264.
Moncol, J., Múdra, M., Lönnecke, P., Koman, M. \& Melník, M. (2004). J. Chem. Crystallogr. 34, 423-431.
Moncol, J., Segla, P., Mikloš, D., Mazúr, M., Melník, M., Głowiak, T., Valko, M. \& Koman, M. (2006). Polyhedron, 25, 1561-1566.
Múdra, M., Moncol, J., Svorec, J., Melník, M., Lönnecke, P., Głowiak, T. \& Kirmse, R. (2003). Inorg. Chem. Commun. 6, 1259-1265.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pavelčík, F. (1993). XP21. Comenius University, Bratislava, Slovakia.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Stachová, P., Korabik, M., Koman, M., Melník, M., Mrozinski, J., Głowiak, T., Mazúr, M. \& Valigura, D. (2006). Inorg. Chim. Acta, 359, 1275-1281.
Stachová, P., Valigura, D., Koman, M. \& Głowiak, T. (2005). Acta Cryst. E61, m994-m996.
Syntex (1973). $P 2_{1}$ Software. Syntex Analytical Instruments, Cupertino, California, USA.
Valach, F., Tokarčík, M., Kubinec, P., Melník, M. \& Macášková, L. (1997). Polyhedron, 16, 1461-1464

